Package: KODAMA 3.0
KODAMA: Knowledge Discovery by Accuracy Maximization
An unsupervised and semi-supervised learning algorithm that performs feature extraction from noisy and high-dimensional data. It facilitates identification of patterns representing underlying groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.
Authors:
KODAMA_3.0.tar.gz
KODAMA_3.0.zip(r-4.5)KODAMA_3.0.zip(r-4.4)KODAMA_3.0.zip(r-4.3)
KODAMA_3.0.tgz(r-4.4-x86_64)KODAMA_3.0.tgz(r-4.4-arm64)KODAMA_3.0.tgz(r-4.3-x86_64)KODAMA_3.0.tgz(r-4.3-arm64)
KODAMA_3.0.tar.gz(r-4.5-noble)KODAMA_3.0.tar.gz(r-4.4-noble)
KODAMA_3.0.tgz(r-4.4-emscripten)KODAMA_3.0.tgz(r-4.3-emscripten)
KODAMA.pdf |KODAMA.html✨
KODAMA/json (API)
# Install 'KODAMA' in R: |
install.packages('KODAMA', repos = c('https://tkcaccia.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tkcaccia/kodama/issues
Last updated 2 months agofrom:66fb558358. Checks:1 OK, 8 ERROR. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 10 2025 |
R-4.5-win-x86_64 | ERROR | Jan 10 2025 |
R-4.5-linux-x86_64 | ERROR | Jan 10 2025 |
R-4.4-win-x86_64 | ERROR | Jan 10 2025 |
R-4.4-mac-x86_64 | ERROR | Jan 10 2025 |
R-4.4-mac-aarch64 | ERROR | Jan 10 2025 |
R-4.3-win-x86_64 | ERROR | Jan 10 2025 |
R-4.3-mac-x86_64 | ERROR | Jan 10 2025 |
R-4.3-mac-aarch64 | ERROR | Jan 10 2025 |
Exports:categorical.testcontinuous.testcore_cppcorrelation.testdinisurfacefloydfrequency_matchinghelicoidk.testkabschKODAMA.matrixKODAMA.visualizationloadsmcplotMDS.defaultsmulti_analysisnormalizationpcaPLSDACV_fastplsPLSDACV_simplsquality_controlrefine_clusterscalingspiralsswissrolltransformytsne.defaultstxtsummaryumap.defaultsvertex
Dependencies:askpassherejsonlitelatticeMatrixminervaopensslpngrappdirsRcppRcppArmadilloRcppEigenRcppTOMLreticulaterlangRnanoflannrprojrootRSpectraRtsnesysumapwithr